STREAMS AND
FILES

OVERVIEW

OVERVIEW

= Many programs are "data processing" applications

= Read the input data
= Perform sequence of operations on this data
= Write the output data

= How we read and write this data is a key part of program

= Currently we are using cin and cout for input / output
= Input stream "cin" is used to read user input

= Qutput stream "cout" is used to print program output
= This is only effective for small quantities of data

CSCE 2004 - Programming Foundations | 2

OVERVIEW

= Files are very useful for data processing applications

= Files provide long term storage of valuable information

= Files can contain large quantities of data
= Files can be viewed and modified by text editors

= Files can be read and written by programs

= |n this section, we will show how

= Files can be used for program input and output
= Input stream "ifstream" is used to read user input
= Qutput stream "ofstream" is used to print program output

CSCE 2004 - Programming Foundations | 3

OVERVIEW

= Lesson objectives:

Learn more about input and output streams
Learn how open and close ASCII files

Learn how to read and write ASCII files

Learn about input / output error checking

Study programs for numerical data input / output
Study programs for mixed data input / output

CSCE 2004 - Programming Foundations |

STREAMS AND
FILES

PART 1
STANDARD I/O STREAMS

STANDARD 1/O
STREAMS

= The term “stream” in computer science has a technical
definition of “a sequence of data elements made available
over time”

= We can visualize the data elements as moving along a
conveyor belt and being processed one at a time

= The “cin” command in C++is an input stream, where
characters that are typed by the user are processed one at
a time to read variables of different types

* The “cout” command in C++ is an output stream, where
variable values are converted into ascii characters and
then displayed one at a time on the monitor

CSCE 2004 - Programming Foundations | 6

STANDARD 1/O
STREAMS

= The "cin" command is used to read input from keyboard

= Cin skips spaces and newlines before reading value
= Cin then does ascii to binary conversion to read variable
= Cin stops reading at space or non-matching character

= Examples

= "cin >> char_variable" — reads single character

= "cin >>int_variable" — reads sequence of digits

= "cin >> float_variable" — reads digits and decimal point
= "cin >> string_variable" — reads sequence of characters

CSCE 2004 - Programming Foundations | 7

STANDARD 1/O
STREAMS

= The "cout" command is used to print output on screen

= Cout then does binary to ascii conversion on variable
= Cout prints output characters to screen
= Cout does not print any spaces before or after variable

= Examples

= "cout << char_variable" — prints single character

= "cout << int_variable" — prints sequence of digits

= "cout << float_variable" — prints digits and decimal point
= "cout << string_variable" — prints sequence of characters

CSCE 2004 - Programming Foundations |

STANDARD 1/O
STREAMS

= The input command (cin >> variable) will return a value

= TRUE if the variable is read successfully
= FALSE if the variable is NOT read successfully

= (cin >>variable) is NOT successful when

= End of file has been reached
= Example: if user enters control-d

= Unexpected character encountered when reading variable
= Example: if user types in "hello" instead of an integer

CSCE 2004 - Programming Foundations |

STANDARD /O
STREAMS

= Example program for reading sequence of integer values

iInt num = 0;
Int total = O;

while ((cin >> num) && (num >=0)) <«——— Loop willread
integers until

total += num; eof is reached
cout << "total=" << total << endl; or a negative
value is read

CSCE 2004 - Programming Foundations |

10

SINGLE
CHARACTERI/O

= We can use single character I/O for more control

= cout.put(ch) will write one character ch onto output stream
= cin.get(ch) reads next character from input stream into ch
= cin.unget() will undo the last get from the input stream

= cin.peek() will look ahead one character without reading

= We can do I/O error checking using return values

= cin.eof() returns TRUE if end of file char has been read
and FALSE otherwise

= cin.get(ch) returns TRUE if end of file char has NOT been
read and FALSE otherwise

CSCE 2004 - Programming Foundations |

11

SINGLE
CHARACTERI/O

= Character-by-character copy example

char Ch;

In. h):
¢ .get(CI) Will be true after
while (!cin.eof()) «— an unsuccessful
{ read attempt

cout.put(Ch);
cin.get(Ch);
}

CSCE 2004 - Programming Foundations | 12

SINGLE
CHARACTERI/O

= Shorter character-by-character copy example

char Ch: Get returns true if

. . read is successful
while (cin.get(Ch)) and false if end of

cout.put(Ch); file is reached

CSCE 2004 - Programming Foundations |

13

ASCII TO INTEGER
CONVERSION

* In most applications, we can simply use “cin >> num” to
read an integer value into a variable

= What if we want to do special error checking to make sure
the user enters data correctly?

= We can do syntax checking as we read integer values

= Skip over spaces and newline characters

= Read digits until a non-digit is found

= Calculate value of integer from digits read

= Print an error message if something strange is read

CSCE 2004 - Programming Foundations | 14

ASCII TO INTEGER
CONVERSION

I/ Sample program for reading integers
int Num = 0O;
char Ch=""

I/ SKip over spaces and newlines
while ((Ch =="") || (Ch =="n"))
cin.get(Ch) ;
if (!cin.eof()) This will undo the last

cin.unget(Ch); <—— get command so we
’ can read first digit of

number below

CSCE 2004 - Programming Foundations | 15

ASCII TO INTEGER
CONVERSION

// Read characters until non-digit is read
while (cin.get(Ch) && (Ch >="0") && (Ch <="9")
Num = Num * 10 + int(Ch) - int('0");
If ('cin.eof())
cin.unget(Ch); This calculation

makes use of the

_ _ fact that ASCII
// Print value of integer codes for digits 0..9

cout << "Num =" << Num << endl; are sequential

CSCE 2004 - Programming Foundations | 16

INTEGER TO ASCII
CONVERSION

* In most applications, we can simply use “cout << num” to
output an integer value from a variable
= What if we want to do this conversion ourselves?
= |tis easy to output digits in reverse order
= |tis harder to output digits in correct order

= How can we output integer digits in reverse order?

= Use modulo operator to calculate least significant digit
= Convert digit into corresponding ascii character

= Print this ascii character to the output

= Use division to remove least significant digit

= Repeat until there are no more digits to output

CSCE 2004 - Programming Foundations | 17

INTEGER TO ASCII
CONVERSION

Example:
num = 6324
digit =num % 10 =4
num =num /10 = 632
digit=num % 10=2

num =num /10 = 63 Notice that we

digit = num % 10 = 3 <€ cglcg!ated the. least
significant digits of num

num=num/10=6 intheorder42 36
digit=num % 10 =6
num=num/10=0

CSCE 2004 - Programming Foundations | 18

INTEGER TO ASCII
CONVERSION

// Output ascii digits of integer in reverse order
Int Num = 4213;
char Ch;

// Loop to calculate ascii digits
while (Num != 0)

{ Calculate the character
Ch =char(Num % 10 +'0"); < representing the least
Num = Num / 10: significant digit
cout.put(Ch);

}

We can convert the integer to
octal representation by using 8
instead of 10 in these steps

CSCE 2004 - Programming Foundations |

19

INTEGER TO ASCII
CONVERSION

= How can we output integer digits in correct order?

Use modulo operator to calculate least significant digit
Convert digit into corresponding ascii character

Save this ascii character in an array of characters
Use division to remove least significant digit

Repeat until there are no more digits

Finally, loop over the array of characters in reverse order
and output the digits in the correct order

CSCE 2004 - Programming Foundations |

20

INTEGER TO ASCII
CONVERSION

Example: Array:.
num = 6324
digit =num % 10 =4 4
num =num /10 = 632
digit=num % 10=2 42
num =num /10 = 63
digit =num % 10 =3 423

num =num/10=6 We can print this

digit=num % 10=6 4236 <— array in reverse
order to output

num=num/10=0 6324

CSCE 2004 - Programming Foundations | 2 1

INTEGER TO ASCII
CONVERSION

// Output ascii digits of integer in correct order
int Num = 3901;

char Ch[10];

int Pos = 0;

// Loop to calculate ascii digits
while (Num !=0) This will save ascii

{ / digits in an array to
Ch[Pos] = char(Num % 10 + '0"); be output later

Num = Num / 10;

Pos++; «— We fill the array from left
} to right as we find digits

CSCE 2004 - Programming Foundations | 22

INTEGER TO ASCII
CONVERSION

/[Loop to print ascii digits in correct order
while (Pos > 0)

{
Pos--; We loop from right to
cout.put(Ch[Pos]); < Ief_t down the array to
print characters in the
} correct order

CSCE 2004 - Programming Foundations |

23

SUMMARY

= |n this section, we learned more about C++ streams

= Additional properties of standard I/O streams
= End of file detection
= Single character I/O commands
= Put, get, unget, peek, eof
= ASCII to integer conversion
= Character by character input
= Integer to ASCII conversion
= Character by character output

CSCE 2004 - Programming Foundations |

24

STREAMS AND
FILES

PART 2
NPUT FILES

INPUT FILES

» Reading program input from a file has several advantages

= We can input very large amounts of data

= \We can save this information long term in file system
= We can read / edit this data using a text editor

= \We can process data created by another program

» C++ has provided support for file input

= Add #include <fstream> at top of program
= Use the ifstream object for program input

CSCE 2004 - Programming Foundations | 26

INPUT FILES

= To read data from an ASCII input file we must

Declare object of ifstream class
= Eg: ifstream din;
Open the input file
= Eg: din.open("input.txt");
= Or: ifstream din (“input.txt”);
Check if open was successful

= Eg: if (din.fail()) cout << "Error opening file\n";

=—Or—f-{ldin)-cout<<—Erroropeningfile\r=
Read data from the input file

= Eg: din >> variable;
Close the input file

= Eg: din.close();

CSCE 2004 - Programming Foundations |

27

READING INTEGERS

= Program to read and total all integer values in afile

ifstream din; < This declares an input

int num = 0; stream called “din”
int total = O;

din.open("numbers.txt");
if (din.fail())
cout << “Error opening file.\n”;
else
{
while (din >> num)
total += num;
cout << "total=" << total << end];
din.close();

}

CSCE 2004 - Programming Foundations | 28

READING INTEGERS

= Program to read and total all integer values in afile

ifstream din:
Int num = 0; This will open a file
int total = 0; <€ called numbers.txt in

_ the current directory
din.open("numbers.txt");

if (din.fail())

cout << “Error opening file.\n”;
else
{

while (din >> num)

total += num;
cout << "total=" << total << end|I;
din.close();

}

CSCE 2004 - Programming Foundations |

29

READING INTEGERS

= Program to read and total all integer values in afile

ifstream din;
int num = 0;
int total = O;

din.open("numbers.txt");

if (din.fail()) < This will report an
cout << "Error opening file.\n; error if din.open fails
else

{
while (din >> num)
total += num;
cout << "total=" << total << end|I;
din.close();

}

CSCE 2004 - Programming Foundations | 30

READING INTEGERS

= Program to read and total all integer values in afile

ifstream din;
int num = 0;
int total = O;

din.open("numbers.txt");
if (din.fail())

cout << “Error opening file.\n”;
else

{ This loop will read
while (din >> num) integers until the end

total += num; I
’ f fil
cout << "total=" << total << end!: of file is reached

din.close();

}

CSCE 2004 - Programming Foundations |

31

READING INTEGERS

= Program to read and total all integer values in afile

ifstream din;
int num = 0;
int total = O;

din.open("numbers.txt");
if (din.fail())

cout << “Error opening file.\n”;
else

{

while (din >> num)
total += num;
cout << "total=" << total << endl;
din.close(); < When we are finished
} reading data we
should close the file

CSCE 2004 - Programming Foundations | 32

READING INTEGERS

= Sample input.txt file (all values on one line)

1234567891011121314151617 1819 20
= Sample input.txt file (five values per line)

1 2 3 45
6 7 8 9 10
11121314 15
161718 19 20

= |t does not matter how this input file is formatted because
the din >> num command will skip over white space
between the integer values

CSCE 2004 - Programming Foundations | 33

READING MIXED DATA

= To read variables with different types from an input file we
need to know what order the data is stored in the file

= For example, if we want to read three pieces of student
Information it could be stored in six different ways!

= student_id last_name GPA
= student id GPA last_name
= Jast_name student _id GPA
= Jast_name GPA student _id
= GPA student_id last_name
= GPA last_name student_id

CSCE 2004 - Programming Foundations |

34

READING MIXED DATA

= Assume that the input file is in the following format

= One student record per line in the file
= Data order: student_id last name GPA

= The goal of our program is to read the input file and print
out the names of all students with GPA >= 3.0

= QOpen input file
= Loop reading student data

= Check student GPA
= Print selected student names

CSCE 2004 - Programming Foundations | 35

READING MIXED DATA

= Program to read and process student data

Ifstream din;

Int ID;

string Name;

float GPA; This will open a file
din.open("student.txt"); called student.txtin
i (1din.fail()) the current directory;
{

while (din >> ID >> Name >> GPA)
If (GPA > 3.0) cout << Name << endl;
din.close();

}

CSCE 2004 - Programming Foundations | 36

READING MIXED DATA

= Program to read and process student data

Ifstream din;

Int ID;

string Name;

float GPA,;

din.open("student.txt"); Read three pieces of

. : : student data from the
|
I{f e / input file in this order

while (din >> ID >> Name >> GPA)
If (GPA > 3.0) cout << Name << endl;
din.close();

}

CSCE 2004 - Programming Foundations | 37

READING MIXED DATA

= Program to read and process student data

Ifstream din;
Int ID;
string Name;
float GPA,
din.open("student.txt");
if (!din.fail())
{
while (din >> ID >> Name >> GPA)
If (GPA > 3.0) cout << Name << endl;
din.close();

Print selected
student name

}

CSCE 2004 - Programming Foundations | 38

READING MIXED DATA

= Sample student.txt file

123
234
345
456

Smith 3.5
Jones 2.7
Brown 3.1
Taylor 2.3

= Advantages of this input file format

CSCE 2004 -

Puts student data in correct order for this program
Keeps all information about one student on one line
Easier to read / edit than one student variable per line

Programming Foundations |

39

READING MIXED DATA

string filename;
cout << "Enter student filename: ";

cin >> filename; \ In this program we
prompt the user to

ifstream din: enter the name of the

: : student input file
din.open(filename.c_str()); P

if (din.fail())
cout << "Error: could not open " << filename << endl;

CSCE 2004 - Programming Foundations | 40

READING MIXED DATA

string filename;
cout << "Enter student filename: ";

in >> fi :
cin >> filename; The c_str() command

converts a string
ifstream din; variable into a cstring
variable, which is
what open expects as
an input parameter

din.open(filename.c_str());

if (din.fail())
cout << "Error: could not open " << filename << endl;

CSCE 2004 - Programming Foundations | 41

READING MIXED DATA

string filename;
cout << "Enter student filename: ";
cin >> filename;

Ifstream din;
din.open(filename.c_str()); If the user enters an

invalid file name we
/ print out an error msg
if (din.fail())

cout << "Error: could not open " << filename << endl;

CSCE 2004 - Programming Foundations | 42

READING MIXED DATA

else
{
int ID[10]; We only read the
string Name[10]: student data if the file
’ open was successful
float GPA[10];
Inti=0;

while (din >> ID[i] >> Name][i] >> GPA[i++])
if (GPA > 3.0) cout << Name[i-1] << end|;
din.close();

CSCE 2004 - Programming Foundations | 43

SUMMARY

= In this section described the C++ syntax for file input

= How to declare an ifstream object
= How to open a file

= How to check for file open errors
= How to read from the file

= How to close the file

= Key concept: The program that reads the file must know
the format of the input file in advance

= QOtherwise values will be read into the wrong variables

CSCE 2004 - Programming Foundations | 44

STREAMS AND
FILES

PART 3
OUTPUT FILES

OUTPUT FILES

= Writing program output into a file has several advantages

= We can output very large amounts of data

= \We can save this information long term in file system
= We can read / edit this data using a text editor

= \We can process this data using another program

= C++ has provided support for file output

= Add #include <fstream> at top of program
= Use the ofstream object for program output

CSCE 2004 - Programming Foundations | 46

OUTPUT FILES

= To write data into an ASCII output file we must

= Declare object of ofstream class
= Eg: ofstream dout;
= Open the output file
= Eg: dout.open("output.txt");
= Check if open was successful
= Eg: if (dout.fail()) cout << "Error opening file\n";
= Write data into the output file
= EgQ: dout << variable;
= Close the output file
= Eg: dout.close();

CSCE 2004 - Programming Foundations | 47

WRITING INTEGERS

= Program to output the times table up to 12x12

This declares an output
stream called “dout”

ofstream dout; <
dout.open("output.txt");
If (dout.fail()) return;

for (int row = 1; row <= 12; row++)
1
for (int col = 1; col <= 12; col++)
dout << row * col << " *;
dout << endl;

}

dout.close();

CSCE 2004 - Programming Foundations | 48

WRITING INTEGERS

= Program to output the times table up to 12x12

ofstream dout; This will create a new
dout.open("output.txt”); < file called output.txt in
if (dout.fail()) return; the current directory

for (int row = 1; row <= 12; row++)
1
for (int col = 1; col <= 12; col++)
dout << row * col << " *;
dout << endl;

}

dout.close();

CSCE 2004 - Programming Foundations | 49

WRITING INTEGERS

= Program to output the times table up to 12x12

ofstream dout;
dout.open("output.txt");
If (dout.fail()) return;

for (int row = 1; row <= 12; row++)

{

for (int col = 1; col <= 12; col++)

dout << row * col << " ";

dout << endl; \ This will output 12
} integer values per line

dout.close(); separated by spaces

CSCE 2004 - Programming Foundations | 50

WRITING INTEGERS

= Contents of output.txt file

1234567891011 12
246810121416 18202224
36912151821 2427 303336
4812 16 20 24 28 32 36 40 44 48

510 15 20 25 30 35 40 45 50 55 60
612 18 24 30 36 42 48 54 60 66 72
7142128 3542495663 707784

8 16 24 32 40 48 56 64 72 80 88 96
91827 36 4554 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120
11 22 3344 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

CSCE 2004 - Programming Foundations | 5 1

WRITING MIXED DATA

= When we write variables with different data types to a file
we need to make the format easy to read

= Group data that belongs together on one line
= Put data fields in a natural order
= Put variable length fields at end of the line

= Example: Writing student information to afile

= Assume student data is stored in three arrays
= Qutput order: ID GPA Name
= One student record per line in the output file

CSCE 2004 - Programming Foundations | 52

WRITING MIXED DATA

= Program to output student data to a file

ofstream doult; This will open a file
dout.open("student.txt"); < called student.txt in
if (dout.fail()) return; the current directory

for (int 1=0; i<count; i++)
dout << ID[i] << ™"
<< GPA[i] <<""
<< Name][i] << endl;
dout.close();

CSCE 2004 - Programming Foundations | 53

WRITING MIXED DATA

= Program to output student data to a file

ofstream dout;

dout.open("student.txt"); This will quietly exit
If (dout.fail()) return; < this function if the file
open fails

for (int 1=0; i<count; i++)
dout << ID[i] << ™"
<< GPAJi] << "
<< Name][i] << endl;
dout.close();

CSCE 2004 - Programming Foundations | 54

WRITING MIXED DATA

= Program to output student data to a file

ofstream dout;
dout.open("student.txt");
If (dout.fail()) return;

for (int I=0; i<count; i++)
dout << ID[i] << " " This will loop over

<< GPA[]] <<"" < three arrays that

N _ I contain student
<< Name[i] << endl; information and write

dout.close(); data to the file

CSCE 2004 - Programming Foundations | 55

WRITING MIXED DATA

= Program to output student data to a file

ofstream dout;
dout.open("student.txt");
If (dout.fail()) return;

for (int i=0; i<count; i++)
dout << ID[i] << " \t"
<< GPA[I] << “t"
<< NameJi] << endl; This will close the

dout.close(); < output file after all
data has been written

CSCE 2004 - Programming Foundations | 56

WRITING MIXED DATA

= Sample student.txt file

123
234
345
456

3.5
2.7
3.1
2.3

Smith

Jones Use getline(din, name)
Jean Claude Van Dam to read the name

Cher

= Notice that this output format has data in adifferent order
than our previous student input file format

We can NOT read this student.txt file using our previous
student input program

We must change either the input format or output format so
they match each other

CSCE 2004 - Programming Foundations |

57

STREAMS AND
FILES

PART 4
EXAMPLE: COPYING A FILE

COPYING A FILE

= This example will demonstrate how to make an exact copy
of an input file

= We will write a function, copyFile, that is given the name of
the input file to copy and the name of the output file to create

= copyFile will loop until end of the input file reading one
character and then writing it to the output file

= We will read with get because >> skips whitespace and we
want to copy the whitespace characters too

CSCE 2004 - Programming Foundations |

59

COPYING A FILE

int main()
{
if (IcopyFile("input.txt", "output.txt")) If the copyFile function
cerr << "Copy file failed\n"; <€ fails then print an error
return O; message to the cerr
} “standard error” stream

CSCE 2004 - Programming Foundations | 60

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)

{ .
ifstream din(inFile.c_str()); < Declgre and open din fc_)r_
ofstream dout(outFile.c_str()); reading and dout for writing
charCh=""

bool Success = false;

if (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else
{

while (din.get(Ch))

dout.put(Ch);

din.close();

dout.close();

Success = true;

}

return Success;

}

CSCE 2004 - Programming Foundations | 6 1

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)

{
ifstream din(inFile.c_str()); Declare Ch to hold a
ofstream dout(outFile.c_str()); character read from the file
char Ch ="/ < and a status flag, Success,
bool Success = false; initialized to false

if (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else
{

while (din.get(Ch))

dout.put(Ch);

din.close();

dout.close();

Success = true;

}

return Success;

}

CSCE 2004 - Programming Foundations | 62

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)

{
ifstream din(inFile.c_str()); If either file did not open
ofstream dout(outFile.c_str()); properly, print an error
char Ch =" message to cerr
bool Success = false; l

If (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else
{

while (din.get(Ch))

dout.put(Ch);

din.close();

dout.close();

Success = true;

}

return Success;

}

CSCE 2004 - Programming Foundations | 63

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)
{

ifstream din(inFile.c_str());

ofstream dout(outFile.c_str());

charCh=""%

bool Success = false;

if (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else

{ .
while (din.get(Ch)) < Read a character until end
dout.put(Ch); of file using get to capture

din.close(); whitespace chars too

dout.close();
sSuccess = true;

}

return Success;

}

CSCE 2004 - Programming Foundations | 64

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)
{

ifstream din(inFile.c_str());

ofstream dout(outFile.c_str());

charCh=""%

bool Success = false;

if (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else

{
Whgﬁu(td"bﬁgté():.h» < Write each character to dout
i P : ’ using put (<< would work too)
din.close();

dout.close();
sSuccess = true;

}

return Success;

}

CSCE 2004 - Programming Foundations | 65

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)
{

ifstream din(inFile.c_str());

ofstream dout(outFile.c_str());

charCh=""

bool Success = false;

if (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else
{
while (din.get(Ch))
dout.put(Ch);
din.close(); < Close both files and set
dout.close(); Success variable to true

Success = true;

}

return Success;

}

CSCE 2004 - Programming Foundations |

66

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)
{

ifstream din(inFile.c_str());

ofstream dout(outFile.c_str());

charCh=""%

bool Success = false;

if (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else
{

while (din.get(Ch))

dout.put(Ch);

din.close();

dout.close();

Success = true;
}
return Success; < Return the value of

} Success (true or false)

CSCE 2004 - Programming Foundations |

67

FUNCTION TO COPY FILE

bool copyFile (const string inFile, const string outFile)
{

ifstream din(inFile.c_str());

ofstream dout(outFile.c_str());

charCh=""%

bool Success = false;

if (din.fail()) cerr << "Error, file " << inFile << " did not exist.\n" ;
else if (dout.fail()) cerr << "Error, could not open " << outFile << endl;
else

{
while (din >> Ch) o
g it
din.close(); P p

dout.close();
sSuccess = true;

}

return Success;

}

CSCE 2004 - Programming Foundations | 68

STREAMS AND
FILES

PART 4
EXAMPLE: FILLING AN ARRAY

FILLING AN ARRAY

» This example will demonstrate how we can read data from
a file and store this information in an array

CSCE 2004 -

We will write a function called fillArray, that is given an
iInput file, an array to hold the data, and the array size

The main program will open the input file, call the fillArray
function, and close the input file

The fillArray function will read data values from the input
file one by one, and store these values in the array

The function will return the number of data values read into
the array (the rest of the array will be left empty)

Programming Foundations |

70

FILLING AN ARRAY

#include <iostream>
#include <fstream>

int main()

{ . .
const int MAXSTUDENTS = 100; < Declare a fixed size
float studentArray[MAXSTUDENTS]; array to hold the data

int numStudents = 0;
ifstream din(“students.txt”);

if (din.fail())
cout << “Could not open students.txt.\n”;
else
{
numStudents = fillArray (din, studentArray, MAXSTUDENTYS));
for (inti = 0; i < numStudents; i++)

cout << studentArray[i] << “7;

cout << endl:
din.close();

}

return O;

}

CSCE 2004 - Programming Foundations | 7 1

FILLING AN ARRAY

#include <iostream>
#include <fstream>

int main()

{
const int MAXSTUDENTS = 100;
float studentArray[MAXSTUDENTS];
int numStudents = 0;

- Declare din and open
ifstream din(“students.txt”); <€ P

“students.txt” for reading

if (din.fail())
cout << “Could not open students.txt.\n”;
else
{
numStudents = fillArray (din, studentArray, MAXSTUDENTYS));
for (inti = 0; i < numStudents; i++)
cout << studentArray[i] << “7;

cout << endl:
din.close();

}

return O;

}

CSCE 2004 - Programming Foundations | 72

FILLING AN ARRAY

#include <iostream>
#include <fstream>

int main()

{
const int MAXSTUDENTS = 100;
float studentArray[MAXSTUDENTS];
int numStudents = 0;

ifstream din("students.txt”); Call the function to fill the

L array from the opened file
if (din.fail())

cout << “Could not open students.txt.\n”;
else
{
numStudents = fillArray (din, studentArray, MAXSTUDENTS)));
for (inti = 0; i < numStudents; i++)

cout << studentArray[i] << “7;

cout << endl:
din.close();

}

return O;

}

CSCE 2004 - Programming Foundations | 73

FILLING AN ARRAY

#include <iostream>
#include <fstream>

int main()

{
const int MAXSTUDENTS = 100;
float studentArray[MAXSTUDENTS];
int numStudents = 0;
ifstream din(“students.txt”);

if (din.fail())
cout << “Could not open students.txt.\n”;
else
{
numStudents = fillArray (din, studentArray, MAXSTUDENTS)));
for (inti = 0; i < numStudents; i++)
cout << studentArray[i] << "7, < Print the array back out
cout << endl; to check that it was
din.close(); filled properly. Use
ietum o: numStudents to avoid
} unused elements

CSCE 2004 - Programming Foundations | 74

FILLING AN ARRAY

#include <iostream>
#include <fstream>

int main()

{
const int MAXSTUDENTS = 100;
float studentArray[MAXSTUDENTS];
int numStudents = 0;
ifstream din(“students.txt”);

if (din.fail())
cout << “Could not open students.txt.\n”;
else
{
numStudents = fillArray (din, studentArray, MAXSTUDENTS)));
for (inti = 0; i < numStudents; i++)

cout << studentArray[i] << “7;

cout << endl; _

din.close(); <€ Close the file
} when finished
return O;

}

CSCE 2004 - Programming Foundations | 75

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)

{ Always pass streams
float tmp; by reference because
iInt numRead = 0; reading/writing

changes the stream by

din >> tmp; adding/removing data
while (!din.eof() && numRead < size)
{

array[numRead] = tmp;

numRead++;

din >> tmp;
}

If ('din.eof())
cerr << “Could not fill all the data in the array.\n”;
return numRead:;

}

CSCE 2004 - Programming Foundations | 76

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)

{

float tmp;

int numRead = O: Regd |nto.a temporary
variable since this
_ read will fail at eof
din >> tmp;

while (!din.eof() && numRead < size)
{
array[numRead] = tmp;
numRead++;
din >> tmp;
}
If ('din.eof())
cerr << “Could not fill all the data in the array.\n”;
return numRead;

}

CSCE 2004 - Programming Foundations | 77

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)

{

float tmp;
Int numRead = 0;

Loop while we have not

din_ >> tmp; _ read the eof marker
while (!din.eof() && numRead < size) < AnD we still have
{ space in the array
array[numRead] = tmp;
numRead++;
din >> tmp;
}

If ('din.eof())
cerr << “Could not fill all the data in the array.\n”;
return numRead:;

}

CSCE 2004 - Programming Foundations | 78

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)
{

float tmp;

Int numRead = 0;

din >> tmp;
while (!din.eof() && numRead < size) .
{ The previous read
_ _ succeeded, store that
array[numRead] = tmp; < value in the array;
numRead++; update the count of
din >> tmp; values read

}
If ('din.eof())

cerr << “Could not fill all the data in the array.\n”;
return numRead:;

}

CSCE 2004 - Programming Foundations |

79

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)
{

float tmp;

Int numRead = 0;

din >> tmp;
while (!din.eof() && numRead < size)
{
array[numRead] = tmp;
numRead++;
din >>tmp; < Read the. next yalue
} from the input file

If ('din.eof())
cerr << “Could not fill all the data in the array.\n”;
return numRead:;

}

CSCE 2004 - Programming Foundations | 80

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)
{

float tmp;

Int numRead = 0;

din >> tmp;
while (!din.eof() && numRead < size)

{ Read] = tmp: If we are not at eof, then
array[numRead] = tmp; there are unread values

numRead++; (we stopped because
din >> tmp; the array was full)

}

If (!din.eof())

cerr << “Could not fill all the data in the array.\n";
return numRead:;

}

CSCE 2004 - Programming Foundations | 8 1

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)
{

float tmp;

Int numRead = 0;

din >> tmp;
while (!din.eof() && numRead < size)
{
array[numRead] = tmp;
numRead++;
din >> tmp;
}

If ('din.eof())
cerr << “Could not fill all the data in the array.\n”;

return numRead:; <€ Return the number of

} values read into the array.
CSCE 2004 - Programming Foundations |

82

FUNCTION TO FILL ARRAY

// Fills the array until end of file is hit
int fillArray (ifstream &din, float array[], const int size)

{

float tmp;
Int numRead = 0;

while ((din >> tmp) && (numRead < size))

array[numRead++] = tmp; \ Here is a more compact
i (1din.eof()) version of the read loop.

cerr << “Could not fill all the data in the array.\n”;
return numRead,;

}

CSCE 2004 - Programming Foundations | 83

SOFTWARE
ENGINEERING TIPS

» Remember to put spaces or tabs between data values

= QOtherwise your output data values will be unreadable

= Be very careful when opening output files

= If you open a file that already exists, you will erase the
original file and overwrite it with your output

= This can be very bad, especially if you use the name of the
iInput file (or your source code!) by accident

CSCE 2004 - Programming Foundations |

34

SUMMARY

= In this section described the C++ syntax for file output

= How to declare an ofstream object
= How to open a file

= How to check for file open errors

= How to write to the file

= How to close the file

CSCE 2004 - Programming Foundations | 85

	Slide 1: Streams and Files
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: OVERVIEW
	Slide 5: Streams and Files
	Slide 6: Standard I/O streams
	Slide 7: Standard I/O streams
	Slide 8: Standard I/O streams
	Slide 9: Standard i/o streams
	Slide 10: Standard i/o streams
	Slide 11: single character i/o
	Slide 12: single character i/o
	Slide 13: single character i/o
	Slide 14: Ascii to integer conversion
	Slide 15: Ascii to integer conversion
	Slide 16: Ascii to integer conversion
	Slide 17: Integer to ascii conversion
	Slide 18: Integer to ascii conversion
	Slide 19: Integer to ascii conversion
	Slide 20: Integer to ascii conversion
	Slide 21: Integer to ascii conversion
	Slide 22: Integer to ascii conversion
	Slide 23: Integer to ascii conversion
	Slide 24: summary
	Slide 25: Streams and files
	Slide 26: Input files
	Slide 27: Input files
	Slide 28: Reading integers
	Slide 29: Reading integers
	Slide 30: Reading integers
	Slide 31: Reading integers
	Slide 32: Reading integers
	Slide 33: Reading integers
	Slide 34: Reading mixed data
	Slide 35: Reading mixed data
	Slide 36: Reading mixed data
	Slide 37: Reading mixed data
	Slide 38: Reading mixed data
	Slide 39: Reading mixed data
	Slide 40: Reading mixed data
	Slide 41: Reading mixed data
	Slide 42: Reading mixed data
	Slide 43: Reading mixed data
	Slide 44: summary
	Slide 45: Streams and files
	Slide 46: Output files
	Slide 47: Output files
	Slide 48: Writing integers
	Slide 49: Writing integers
	Slide 50: Writing integers
	Slide 51: Writing integers
	Slide 52: Writing mixed data
	Slide 53: Writing mixed data
	Slide 54: Writing mixed data
	Slide 55: Writing mixed data
	Slide 56: Writing mixed data
	Slide 57: Writing mixed data
	Slide 58: Streams and files
	Slide 59: COPYING A FILE
	Slide 60: COPYING A FILE
	Slide 61: FUNCTION TO COPY FILE
	Slide 62: FUNCTION TO COPY FILE
	Slide 63: FUNCTION TO COPY FILE
	Slide 64: FUNCTION TO COPY FILE
	Slide 65: FUNCTION TO COPY FILE
	Slide 66: FUNCTION TO COPY FILE
	Slide 67: FUNCTION TO COPY FILE
	Slide 68: FUNCTION TO COPY FILE
	Slide 69: Streams and files
	Slide 70: FILLING AN ARRAY
	Slide 71: FILLING AN ARRAY
	Slide 72: FILLING AN ARRAY
	Slide 73: FILLING AN ARRAY
	Slide 74: FILLING AN ARRAY
	Slide 75: FILLING AN ARRAY
	Slide 76: FUNCTION TO FILL ARRAY
	Slide 77: FUNCTION TO FILL ARRAY
	Slide 78: FUNCTION TO FILL ARRAY
	Slide 79: FUNCTION TO FILL ARRAY
	Slide 80: FUNCTION TO FILL ARRAY
	Slide 81: FUNCTION TO FILL ARRAY
	Slide 82: FUNCTION TO FILL ARRAY
	Slide 83: FUNCTION TO FILL ARRAY
	Slide 84: Software engineering tips
	Slide 85: summary

